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Abstract: The tenacity of an incomplete connected graph G is defined as T (G) = min{ |S|+m(G−S)
ω(G−S) : S ⊂

V (G), ω(G− S) > 1}, where ω(G− S) and m(G− S), respectively, denote the number of components and the
order of a largest component in G−S. This is a reasonable parameter to measure the vulnerability of networks, as
it takes into account both the amount of work done to damage the network and how badly the network is damaged.
In this paper, we firstly give some results on the tenacity of gear graphs. After that, the tenacity of the lexicographic
product of some special graphs are calculated. We also give the exact values for the tenacity of powers of paths.
Finally, the relationships between the tenacity and some vulnerability parameters, namely the integrity, toughness
and scattering number are established.
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1 Introduction
The vulnerability of a communication network, com-
posed of processing nodes and communication links,
is of prime importance to network designers. As the
network begins losing links or nodes, eventually there
is a loss in its effectiveness. Thus, communication
networks must be constructed to be as stable as possi-
ble, not only with respect to the initial disruption, but
also with respect to the possible reconstruction of the
network.

The communication network often has as con-
siderable an impact on a network’s performance as
the processors themselves. Performance measures for
communication networks are essential to guide the de-
signers in choosing an appropriate topology.

In order to measure the performance, we are in-
terested in the following performance metrics (there
may be others):

(1) the number of elements that are not functioning,

(2) the number of remaining connected sub-networks,

(3) the size of a largest remaining group within which
mutual communication can still occur.

The communication network can be represented
as an undirected and unweighted graph, where a pro-
cessor (station) is represented as a node and a com-
munication link between processors (stations) as an
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edge between corresponding nodes. If we use a graph
to model a network, there are many graph theoretical
parameters used to describe the vulnerability of com-
munication networks.

Most notably, the vertex-connectivity and edge-
connectivity have been frequently used. The diffi-
culty with these parameters is that they do not take
into account what remains after the graph is discon-
nected. Consequently, a number of other parameters
have been introduced that attempt to cope with this
difficulty, including toughness and edge-toughness
in [10,20,25], integrity and edge-integrity in [4,5,6],
tenacity and edge-tenacity in [1,8,9,11,12,16,18,21],
rupture degree in [14,15,17] and scattering number in
[22,23,25]. Unlike the connectivity measures, each of
these parameters shows not only the difficulty to break
down the network but also the damage that has been
caused.

For convenience, we recall some parameters of
[2]. Let G be a finite simple graph with vertex set
V (G) and edge set E(G). For S ⊆ V (G), let
ω(G − S) and m(G − S), respectively, denote the
number of components and the order of a largest com-
ponent in G − S. A set S ⊆ V (G) is a cut set of G,
if either G−S is disconnected or G−S has only one
vertex. We shall use ⌈x⌉ for the smallest integer not
smaller than x, and ⌊x⌋ for the largest integer not larg-
er than x. An edge is said to be subdivided when it is
replaced by a path of length two connecting its end-
s, and the internal vertex in this path is a new vertex.
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A subset S of V is called an independent set of G if
no two vertices of S are adjacent in G. An indepen-
dent set S is a maximum if G has no independent set
S′ with |S′| > |S|. The independence number of G,
β(G), is the number of vertices in a maximum inde-
pendent set of G. A subset S of V is called a covering
of G if every edge of G has at least one end in S. A
covering S is a minimum covering if G has no cover-
ing S′ with |S′| > |S|. The covering number, α(G),
is the number of vertices in a minimum covering ofG.

We use Bondy and Murty [2] for terminology and
notations not defined here. For comparing, the follow-
ing graph parameters are listed.

The connectivity is a parameter defined based on
Quantity (1). The connectivity of an incomplete graph
G is defined by

κ(G) = min{|S| : S ⊂ V (G), ω(G− S) > 1},

and that of the complete graph Kn is defined as n−1.
Both toughness and scattering number take into

account Quantities (1) and (2). The toughness and
scattering number of an incomplete connected graph
G are defined by

t(G) = min{ |S|
ω(G− S)

: S ⊂ V (G), ω(G−S) > 1}

and

s(G) = max{ω(G− S)− |S| : S ⊂ V (G),

ω(G− S) > 1},
respectively.

The integrity is defined based on Quantities (1)
and (3). The integrity of a graph G is defined by

I(G) = min{|S|+m(G− S) : S ⊂ V (G)}.

Both the tenacity and rupture degree take into ac-
count all the three quantities. The tenacity and rup-
ture degree of an incomplete connected graph G are
defined by

T (G) = min{|S|+m(G− S)
ω(G− S)

:

S ⊂ V (G), ω(G− S) > 1}
and

r(G) = max{ω(G−X)− |X| −m(G−X) :

X ⊂ V (G), ω(G−X) > 1},
respectively. And the tenacity and rupture degree of
the complete graph Kn is defined as n and n − 1, re-
spectively.

The corresponding edge analogues of these con-
cepts are defined similarly, see [6, 20, 21].

From the above definitions, we can see that the
connectivity of a graph reflects the difficulty in break-
ing down a network into several pieces. This invariant
is often too weak, since it does not take into accoun-
t what remains after the corresponding graph is dis-
connected. Unlike the connectivity, each of the oth-
er vulnerability measures, i.e., toughness, scattering
number, integrity, tenacity and rupture degree, reflects
not only the difficulty in breaking down the network
but also the damage that has been caused. Further,
we can easily see that the tenacity and rupture degree
are the two most advanced ones among these param-
eters when measuring the vulnerability of networks.
Among the above parameters, the tenacity is a reason-
able parameter can be used for measuring the vulner-
ability of networks [1,7,8,10,11,17,18].

A vertex cut set S of a graph G is called a T-set of
G if it satisfies that T (G) = |S|+m(G−S)

ω(G−S) .

In [11], Moazzami et al. compared the integrity,
connectivity, binding number, toughness, and tenaci-
ty for several classes of graphs. In [9], Choudum et
al. studied the tenacity of complete graph products
and grids. In [16], Li, Ye and Li discussed the tenaci-
ty and rupture degree for permutation graphs of com-
plete bipartite graphs. Li, Ye and Sheng gave exac-
t values of rupture degree for some useful graphs in
[15]. Cheng et al. [8] determined the maximum tenac-
ity of trees and unicyclic graphs with given order and
show the corresponding extremal graphs. These re-
sults are helpful in constructing stable networks with
lower costs. Cozzens et al.[11] studied the tenacity of
Harary Graphs. In [18], Mann proved that computing
the tenacity of a graph is NP-hard in general. So, it is
an interesting problem to determine tenacity for some
special graphs.

In this paper, we consider the problem of comput-
ing the tenacity of graphs. In Section 2, we give some
results on the tenacity of gear graphs. After that, the
tenacity of the lexicographic product of some special
graphs, such as Pn[P2], Cn[P2] and K1,n−1[P2] are
calculated in sections 3. We also give the exact values
for the tenacity of powers of paths in section 4. Fi-
nally, the relationships between the tenacity and some
vulnerability parameters, namely the integrity, tough-
ness and scattering number are established in sections
5.
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2 Computing the Tenacity of Gear
Graphs

Geared systems are used in dynamic modelling.
These are graph theoretic models that are obtained by
using gear graphs. Similarly the cartesian product of
gear graphs, the complement of a gear graph, and the
line graph of a gear graph can be used to design a gear
network. We know that the tenacity is a reasonable
parameter to measure the vulnerability among these
parameters. Consequently these considerations mo-
tivated us to investigate the tenacity of gear graphs.
Now we give the following definitions.

Definition 1 [2] The wheel graph with n spokes,
Wn, is the graph that consists of an n-cycle and one
additional vertex, say u, that is adjacent to all the ver-
tices of the cycle.

In Figure 1, we display W6.

u

Figure 1: Wheel graph W6

Definition 2 [7] The gear graph Gn is a graph ob-
tained from the wheel graph Wn by subdividing each
edge of the outer n-cycle of the Wn just once.

It is easily seen that the gear graph Gn has 2n+1
vertices and 3n edges. In Figure 2 we display G6 and
we call the vertex u center vertex ofGn. Now we give
the tenacity of a gear graph.

Theorem 3 Let Gn be a gear graph. Then

T (Gn) = 1.

Proof. On one hand, Gn is an incomplete connected
graph with |V (Gn)| = 2n+ 1 number of vertices, let
S be a cut set of Gn with |S| = x, then the remaining
graph Gn − S has at most x+ 1 components, and so,

m(Gn − S) ≥
2n+ 1− x
x+ 1

.

u

Figure 2: Gear graph G6

Since
2n+ 1− x
x+ 1

≥ 1,

So, x must be at most n.
So we get that

T (Gn) ≥ min{
2n+1−x
x+1 + x

x+ 1
},

where x ≤ n.
Now we consider the function

f(x) =
2n+1−x
x+1 + x

x+ 1
=
x2 + (2n+ 1)

(x+ 1)2
.

It is easy to see that

f
′
(x) =

2(x− (2n+ 1))

(x+ 1)3
.

Since x ≤ n < 2n + 1, we have f
′
(x) < 0, and so

f(x) is a decreasing function.
Thus the function

f(x) =
x2 + (2n+ 1)

(x+ 1)2
.

takes its minimum value at x = n, and fmin(x) = 1.
Since this value can be achieved for each n, we have

T (Gn) ≥ 1. (1)

On the other hand, we let S′ denotes the covering set
of Gn. Then |S′| = α(Gn) = n and ω(Gn − S′) =
β(Gn) = n + 1. So m(Gn − S′) = 1. From the
definition of tenacity, we have

T (Gn) ≤
|S′|+m(Gn − S′)

ω(Gn − S′)
=
n+ 1

n+ 1
= 1. (2)

Consequently, by using (1) and (2), we have T (Gn) =
1. ⊓⊔

In the next, we will study the tenacity of com-
plement of gear graph Gn. Firstly, we introduce the
concept of the complement of a graph.
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Definition 4 [2] The complement of a graph G is a
graphG on the same vertices such that two vertices of
G are adjacent if and only if they are not adjacent in
G.

Theorem 5 Let Gn be a gear graph. Then

T (Gn) = n.

Proof. We know that a gear graph Gn can be con-
structed from a wheel graph Wn by subdividing each
edge of the outer cycle of the Wn just once. Let S′

be a set of vertices of the outer n-cycle in Wn, and let
S′′ be a set of vertices which are added to the outer
n-cycle in Gn. Let u be a center vertex. Since S′ is an
independent set of Gn, these vertices form a complete
graph with order n inGn. Similarly, since S′′∪{u} is
an independent set of Gn, these vertices form a com-
plete graph with order n + 1 in Gn. Moreover the
graph Gn contains some edges joining Kn+1 to Kn.
It is obvious that the vertex u in Gn is not adjacent to
any vertex in Kn. So we have two cases:

Case 1. If we remove the vertices of S′ in Gn, then
we have only one component which is graph Kn+1.
Then

m(Gn − S′) = |V (Kn+1)| = n+ 1

and so

|S′|+m(Gn − S′)

ω(Gn − S′)
= 2n+ 1. (3)

Case 2. If we remove the vertices of S′′ in Gn, then
we have two components which are graphs Kn and
K1. Then

m(Gn − S′′) = |V (Kn)| = n

and so
|S′′|+m(Gn − S′′)

ω(Gn − S′′)
= n. (4)

By using (3) and (4) we have T (Gn) = min{n, 2n+
1} = n. ⊓⊔

Now we consider the tenacity of the cartesian
product of two graphs.

Definition 6 (2) The Cartesian product of two
graphs G1 and G2, denoted by G1 × G2, is defined
as follows:

V (G1 ×G2) = V (G1)× V (G2),

two vertices (u1, u2) and (v1, v2) are adjacent if and
only if u1 = v1 and u2 is adjacent to v2 in G2 or u1 is
adjacent to v1 in G1 and u2 = v2.

Observe that if G1 and G2 are connected, then
G1 ×G2 is connected.

Lemma 7 [25] Let Gn be a gear graph. Then

t(K2 ×Gn) = 1.

Lemma 8 [25] Let m ≥ 3 and n ≥ 3 be positive
integers. Then

t(Gm ×Gn) =
2mn+m+ n

2mn+m+ n+ 1
.

Lemma 9 [12] If G is an incomplete connected
graph, β(G) is the independence number of G and
t(G) is the toughness of G, then we have

T (G) ≥ t(G) + 1

β(G)
.

Theorem 10 Let Gn be a gear graph. Then

T (K2 ×Gn) =
2n+ 2

2n+ 1
.

Proof. It is easy to see that β(K2 × Gn) = 2n + 1.
On one hand, by lemmas 7 and 9, we know that

T (K2 ×Gn) ≥ t(K2 ×Gn) +
1

β(K2 ×Gn)
=

2n+ 2

2n+ 1
. (5)

On the other hand, we can take the covering set S
of K2×Gn instead of a vertex cut of K2×Gn. Then
|S| = α(K2×Gn) = 2n+1 and ω(K2×Gn−S) =
β(K2 × Gn) = 2n + 1. So m(K2 × Gn − S) = 1.
From the definition of tenacity, we have

T (K2 ×Gn) ≤
|S|+m(K2 ×Gn − S)

ω(K2 ×Gn − S)
=

2n+ 2

2n+ 1
. (6)

Consequently, by using (5) and (6), we have T (K2 ×
Gn) =

2n+2
2n+1 . ⊓⊔

Theorem 11 Let m ≥ 3 and n ≥ 3 be positive inte-
gers. Then

T (Gm ×Gn) = 1.

Proof. It is obvious that β(Gm×Gn) = 2mn+m+
n+ 1, α(Gm ×Gn) = 2mn+m+ n. On one hand,
by lemmas 8 and 9, we know that

T (Gm ×Gn) ≥ t(Gm ×Gn) +
1

β(Gm ×Gn)
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=
2mn+m+ n+ 1

2mn+m+ n+ 1
= 1. (7)

On the other hand, we let S denotes the covering
set of Gm×Gn. Then |S| = α(Gm×Gn) = 2mn+
m + n and ω(Gm × Gn − S) = β(Gm × Gn) =
2mn+m+ n+ 1. So m(Gm ×Gn − S) = 1. From
the definition of tenacity, we have

T (Gm ×Gn) ≤
|S|+m(Gm ×Gn − S)

ω(Gm ×Gn − S)
=

2mn+m+ n+ 1

2mn+m+ n+ 1
= 1. (8)

Consequently, by using (7) and (8), we have T (Gm ×
Gn) = 1. ⊓⊔

Definition 12 [2] The line graph L(G) of a graph G
is a graph such that each vertex of L(G) represents an
edge of G, and any two vertices of L(G) are adjacent
if and only if their edges are incident, meaning they
share a common end vertex in G.

Theorem 13 Let Gn be a gear graph. Then

T (L(Gn)) =
2n+ 1

n
.

Proof. It is obvious that β(L(Gn)) = n and
α(L(Gn)) = 2n. On one hand, let S be a cut set
of L(Gn) with |S| = x, then the remaining graph
L(Gn)− S has at most x2 components, i.e.

ω(L(Gn)− S) ≤
x

2
,

and so
m(L(Gn)− S) ≥

3n− x
x
2

.

Since 3n−x
x
2
≥ 1, x must be at most 2n. Thus we get

that

T (L(Gn)) ≥ min{
x+ 3n−x

x
2

x
2

},

where x ≤ 2n.
Now we consider the function

f(x) =
x+ 3n−x

x
2

x
2

=
2(x2 − 2x+ 6n)

x2
.

It is easy to see that

f
′
(x) =

4(x− 6n)

x3
.

Since x ≤ 2n < 6n, we have f
′
(x) < 0, and so f(x)

is a decreasing function. So, the function

f(x) =
2(x2 − 2x+ 6n)

x2

takes its minimum value at x = 2n, and fmin(x) =
2n+1
n . Since this value can be achieved for each n, we

have
T (L(Gn)) ≥

2n+ 1

n
. (9)

On the other hand, we let S′ denotes the cover-
ing set of L(Gn). Then |S′| = α(L(Gn)) = 2n and
ω(L(Gn) − S′) = β(L(Gn)) = n. So m(L(Gn) −
S′) = 1. From the definition of tenacity, we have

T (L(Gn)) ≤
|S′|+m(L(Gn)− S′)

ω(L(Gn)− S′)

=
2n+ 1

n
. (10)

Consequently, by using (9) and (10), we have
T (L(Gn)) =

2n+1
n . ⊓⊔

3 Computing the Tenacity of Lexico-
graphic Product of Graphs

In this section, the tenacity of the lexicographic prod-
uct of some special graphs, Pn[P2], Cn[P2] and
K1,n−1[P2] are calculated.

Definition 14 [5] The lexicographic product
G1[G2] of two graphs G1 and G2 is a graph such
that:

V (G1[G2]) = V (G1)× V (G2),

two distinct vertices (u1, v1) and (u2, v2) of G1[G2]
are adjacent if and only if either u1 is adjacent to u2
in G1 or u1 = u2 and v1 is adjacent to v2 in G2.

The lexicographic product is also known as the
composition. The lexicographic product is not com-
mutative and is connected whenever G1 is connected.

Theorem 15 Let Pn be the path with order n (n ≥
4), then the tenacity of Pn[P2] is

T (Pn[P2]) =

{
2(n+2)
n if n is even
2 if n is odd.

Proof. Pn[P2] is a connected graph with
|V (Pn[P2])| = 2n number of vertices. We distinguish
two cases:

Case 1. When n is even. Let S be a cut set of Pn[P2]
with |S| = x, it is obvious that x ≥ 2.

Subcase 1.1 When x ≥ 3, we note that Pn[P2] − S
has at most ⌈x2 ⌉ components. This implies

m(Pn[P2]− S) ≥
2n− x
⌈x2 ⌉

.
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Since 2n−x
x
2
≥ 2, xmust be at most n. Hence, we have

that

T (Pn[P2] ≥ min{
2n−x

x
2

+ x

x
2

},

where x ≤ n.
Now we consider the function

f(x) =

2n−x
x
2

+ x

x
2

=
2(4n+ x2 − 2x)

x2
.

It is easy to see that

f
′
(x) =

4(x− 4n)

x3
.

Since x ≤ n < 4n, we have f
′
(x) < 0, and so f(x)

is a decreasing function. Thus the function

f(x) =
2(4n+ x2 − 2x)

x2

takes its minimum value at x = n, and fmin(x) =
2(n+2)
n . Since this value can be achieved for each even

n, we have

T (Pn[P2]) ≥
2(n+ 2)

n
.

Subcase 1.2 When x = 2, we note that Pn[P2]−S has
exact 2 components. This implies m(Pn[P2] − S) ≥
n. Hence, we have that

|S|+m(Pn[P2]− S)
ω(Pn[P2]− S)

≥ 2 + n

2
.

It is easily seen that when n ≥ 4,

2 + n

2
≥ 2(n+ 2)

n
.

So, in this case we have

T (Pn[P2]) ≥
2(n+ 2)

n
. (11)

On the other hand, as shown in Figure 3, we let

S′ = {((ui, v1), (ui, v2))|i = 2, 4, · · · , n− 2},

then |S′| = n − 2, ω(Pn[P2] − S′) = n
2 and

m(Pn[P2] − S′) = 4. From the definition of tenac-
ity, we have

T (Pn[P2]) ≤
|S′|+m(Pn[P2]− S′)

ω(Pn[P2]− S′)

=
2(n+ 2)

n
. (12)

Consequently, by using (11) and (12), we know that
in this case

T (Pn[P2]) =
2(n+ 2)

n
. (13)

Case 2. When n is odd. Let S be a cut set of Pn[P2]
with |S| = x, it is obvious that x ≥ 2. Note that
Pn[P2] − S has at most ⌊x+2

2 ⌋ components. This im-
plies

m(Pn[P2]− S) ≥
2n− x
⌊x+2

2 ⌋
.

Since 2n−x
x+2
2

≥ 2, x must be at most n − 1. We have

that

T (Pn[P2] ≥ min{
2n−x
x+2
2

+ x

x+2
2

},

where x ≤ n− 1.
Now we consider the function

f(x) =

2n−x
x+2
2

+ x

x+2
2

=
2(x2 + 4n)

(x+ 2)2
.

It is easy to see that

f
′
(x) =

8(x− 2n)

(x+ 2)3
.

Since x ≤ n − 1 < 2n, we have f
′
(x) < 0, and so

f(x) is a decreasing function. Thus the function

f(x) =
2(x2 + 4n)

(x+ 2)2

takes its minimum value at x = n−1, and fmin(x) =
2. Since this value can be achieved for each odd n, we
have

T (Pn[P2]) ≥ 2. (14)

On the other hand, as shown in Figure 3, we let

S′ = {((ui, v1), (ui, v2))|i = 2, 4, · · · , n− 1},

then |S′| = n − 1, ω(Pn[P2] − S′) = n+1
2 and

m(Pn[P2] − S′) = 2. From the definition of tenac-
ity, we have

T (Pn[P2]) ≤
|S′|+m(Pn[P2]− S′)

ω(Pn[P2]− S′)
= 2. (15)

Hence, by combing (14) and (15), we know that in this
case

T (Pn[P2]) = 2. (16)

Consequently, by using (13) and (16), we have

T (Pn[P2]) =

{
2(n+2)
n if n is even

2 if n is odd.

⊓⊔
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u1 u2 u3 un−1 un

v1 v2

(u1, v1) (u2, v1) (u3, v1) (un−1, v1) (un, v1)

(u1, v2) (u2, v2) (u3, v2) (un−1, v2) (un, v2)

Figure 3: Graphs Pn, P2 and Pn[P2]

Theorem 16 Let Cn be the cycle with order n (n ≥
4), then the tenacity of Cn[P2] is

T (Cn[P2]) =

{
2(n+2)
n if n is even

2(n+3)
n−1 if n is odd.

Proof. Cn[P2] is a connected graph with
|V (Cn[P2])| = 2n number of vertices. We distinguish
two cases to complete the proof.

Case 1. When n is even. Let S be a cut set of Cn[P2]
with |S| = x, it is obvious that x ≥ 4. Note that
Cn[P2]−S has at most ⌊x2 ⌋ components. This implies

m(Cn[P2]− S) ≥
2n− x
⌊x2 ⌋

.

Since 2n−x
x
2
≥ 2, xmust be at most n. Hence, we have

that

T (Cn[P2] ≥ min{
2n−x

x
2

+ x

x
2

},

where x ≤ n.
Now we consider the function

f(x) =

2n−x
x
2

+ x

x
2

=
2(4n+ x2 − 2x)

x2
.

It is easy to see that

f
′
(x) =

4(x− 4n)

x3
.

Since x ≤ n < 4n, we have f
′
(x) < 0, and so f(x)

is a decreasing function. Thus the function

f(x) =
2(4n+ x2 − 2x)

x2

takes its minimum value at x = n, and fmin(x) =
2(n+2)
n . Since this value can be achieved for each even

n, we have

T (Cn[P2]) ≥
2(n+ 2)

n
. (17)

On the other hand, as shown in Figure 4, we let

S′ = {((ui, v1), (ui, v2))|i = 1, 3, · · · , n− 1},

then |S′| = n, ω(Pn[P2]− S′) = n
2 and m(Pn[P2]−

S′) = 2. From the definition of tenacity, we have

T (Pn[P2]) ≤
|S′|+m(Pn[P2]− S′)

ω(Pn[P2]− S′)

=
2(n+ 2)

n
. (18)

Consequently, by using (17) and (18), we know that
in case 1

T (Pn[P2]) =
2(n+ 2)

n
. (19)

Case 2. When n is odd. Let S be a cut set of Cn[P2]
with |S| = x, it is obvious that x ≥ 4.

Subcase 1.1 When x ≥ 5, we note that Cn[P2] − S
has at most ⌈x−2

2 ⌉ components. This implies

m(Cn[P2]− S) ≥
2n− x
⌈x−2

2 ⌉
.

Since 2n−x
x−2
2

≥ 2, x must be at most n + 1. We have

that

T (Cn[P2] ≥ min{
2n−x
x−2
2

+ x

x−2
2

},

where x ≤ n+ 1.
Now we consider the function

f(x) =

2n−x
x−2
2

+ x

x−2
2

=
2(x2 − 4x+ 4n)

(x− 2)2
.

It is easy to see that

f
′
(x) =

16(1− n)
(x− 2)3

< 0,

so, f(x) is a decreasing function. The function

f(x) =
2(x2 − 4x+ 4n)

(x− 2)2

takes its minimum value at x = n+1, and fmin(x) =
2(n+3)
n−1 . Since this value can be achieved for each odd
n, we have

T (Cn[P2]) ≥
2(n+ 3)

n− 1
.

Subcase 1.2 When x = 4, we note that Cn[P2] − S
has exact 2 components. This implies

m(Cn[P2]− S) ≥ n− 1.
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Hence, we have that

|S|+m(Cn[P2]− S)
ω(Cn[P2]− S)

≥ 3 + n

2
.

It is easily seen that when n ≥ 5,

3 + n

2
≥ 2(n+ 3)

n− 1
.

So, in case 2, we have

T (Cn[P2]) ≥
2(n+ 3)

n− 1
. (20)

On the other hand, as shown in figure 4, we let

S′ = {((ui, v1), (ui, v2))|i = 1, 3, · · · , n− 2},

then |S′| = n − 1, ω(Pn[P2] − S′) = n−1
2 and

m(Pn[P2] − S′) = 4. From the definition of tenac-
ity, we have

T (Pn[P2]) ≤
|S′|+m(Pn[P2]− S′)

ω(Pn[P2]− S′)

=
2(n+ 3)

n− 1
. (21)

Consequently, by using (20) and (21), we have the fol-
lowing result in case 2

T (Pn[P2]) =
2(n+ 3)

n− 1
. (22)

Hence, by combing (19) and (22), we have

T (Cn[P2]) =

{
2(n+2)
n if n is even

2(n+3)
n−1 if n is odd.

⊓⊔

u1 u2 u3 un−1 un

v1 v2

(u1, v1) (u2, v1) (u3, v1) (un−1, v1) (un, v1)

(u1, v2) (u2, v2) (u3, v2) (un−1, v2) (un, v2)

Figure 4: Graphs Cn, P2 and Cn[P2]

Theorem 17 Let K1,n−1 be the star with order
n(n ≥ 4), then the tenacity of K1,n−1[P2] is

T (K1,n−1[P2]) =
4

n− 1
.

Proof. K1,n−1[P2] is a connected graph with
|V (K1,n−1[P2])| = 2n number of vertices. On one
hand, it is easy to see that the connectivity ofK1,n[P2]
is κ(K1,n−1[P2]) = 2. As shown in Figure 5, the ver-
tex set S = {(u, v1), (u, v2)} is the unique cut set
which satisfies the connectivity of K1,n−1[P2]. If we
remove the S from K1,n−1[P2], then the remaining
graph has

ω(K1,n−1[P2]− S) = n− 1

components and the order of the largest component of
K1,n−1[P2] is m(K1,n[P2] − S) = 2. Hence, by the
definition of tenacity, we know that

T (K1,n−1[P2]) ≤
|S|+m(K1,n−1[P2]− S)

ω(K1,n−1[P2]− S)
=

4

n− 1
. (23)

On the other hand, let S′ be a T -set of K1,n[P2],
if S′ has more than two vertices, it is easy to see that

ω(K1,n−1[P2]− S′) ≤ n− 1

and
m(K1,n[P2]− S′) ≥ 1.

Hence, by the definition of tenacity, we know that

T (K1,n−1[P2]) =
|S′|+m(K1,n−1[P2]− S′)

ω(K1,n−1[P2]− S′)

≥ 4

n− 1
. (24)

Consequently, by using(23) and (24), we have
T (K1,n−1[P2]) =

4
n−1 . ⊓⊔

4 Tenacity of Powers of Paths

For an integer k ≥ 1, the k-th power of a graph
G, denoted by Gk, is a supergraph with V (Gk) =
V (G) and E(Gk) = {(u, v) : u, v ∈ V (G), u ̸=
v and dG(u, v) ≤ k}. The second power of a graph is
also called its square.

We notice thatG1 is justG itself. So, we let k ≥ 2
in the following.

As a useful network, power of cycles and path-
s have arouse interests for many network designers.
C.A. Barefoot, et al. gave the exact values of integrity
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u

u1 u2 u3 un−1

v1 v2

(u, v1)

(u1, v1)(u2, v1)(u3, v1) (un−1, v1)

(u, v2)

(u1, v2) (u2, v2)(u3, v2) (un−1, v2)

Figure 5: Graphs K1,n−1, P2 and K1,n−1[P2]

of powers of cycles in [3], and determined the con-
nectivity, binding number and toughness of powers
of cycles[4]. Vertex-neighbor-integrity of powers of
cycles were studied in [13] by Cozzens and Wu. In
[19] Moazzami gave the exact values for the tenacity
of powers of cycles. Zhang and Yang[24] studied the
binding number of the Powers of Paths and cycles.

In this section, we consider the problem of com-
puting the tenacity of powers of paths. It is easy to
see that P kn ∼= Kn if n ≤ k + 1. So, in the following
lemmas, we suppose that 2 ≤ k ≤ n− 2.

Lemma 18 If S is a minimal T -set for the graph P kn ,
2 ≤ k ≤ n−2, then S consists of the union of sets of k
consecutive vertices such that there exists at least one
vertex not in S between any two sets of consecutive
vertices in S.

Proof. We assume that the vertices of P kn are la-
beled by 0, 1, 2, · · · , n − 1. Let S be a minimal
T -set of P kn and j be the smallest integer such that
T = {j, j + 1, · · · , j + t − 1} is a maximum set of
consecutive vertices such that T ⊆ S. Relabel the ver-
tices of P kn as v1 = j, v2 = j+1, · · · , vt = j+ t− 1,
· · · , vn = j − 1. Since S ̸= V (P kn ) and T ̸= V (P kn ),
vn does not belong to S. Since S must leave at least
two components of G − S, we have t ̸= n − 1, and
so vt+1 ̸= vn. Therefore, {vt+1, vn} ∩ S = ∅. Now
suppose t < k. Choose vi such that 1 ≤ i ≤ t, and
delete vi from S yielding a new set S

′
= S−{vi}with

|S′ | = |S| − 1. By the definition of P kn (1 ≤ k ≤ n
2 )

we know that the edges vivn and vivt+1 are in P kn−S
′
.

Consider a vertex vp adjacent to vi in P kn − S
′
. If

p ≥ t + 1, then p < t + k. So, vp is also adjacent to
vt+1 in P kn − S

′
. If p < n, then p ≥ n− k+1 and vp

is also adjacent to vn in P kn − S
′
. Since t < k, then

vn and vt+1 are adjacent in P kn − S
′
. Therefore, we

can conclude that deleting the vertex vi from S does
not change the number of components, and so

ω(P kn − S
′
) = ω(P kn − S)

and
m(P kn − S

′
) ≤ m(P kn − S) + 1.

Thus, we have

|S′ |+m(P kn − S
′
)

ω(P kn − S
′)

≤ |S| − 1 +m(P kn − S) + 1

ω(P kn − S)

=
|S|+m(P kn − S)

ω(P kn − S)
= T (P kn ).

This is contrary to our choice of S. Thus we must
have t ≥ k. Now suppose t > k. Delete vt from
the set S yielding a new set S1 = S − {vt}. Since
t > k, the edge vtvn is not in P kn − S1. Consider a
vertex vp adjacent to vt in P kn − S1. Then, p ≥ t + 1
and p ≤ t + k, and so vp is also adjacent to vt+1 in
P kn − S1. Therefore, deleting vt from S yields

ω(P kn − S1) = ω(P kn − S)

and
m(P kn − S1) ≤ m(P kn − S) + 1.

So,

|S1|+m(P kn − S1)
ω(P kn − S1)

≤ |S| − 1 +m(P kn − S) + 1

ω(P kn − S)

=
|S|+m(P kn − S)

ω(P kn − S)
= T (P kn ),

which is again contrary to our choice of S. Thus, t =
k, and so S consists of the union of sets of exactly k
consecutive vertices. ⊓⊔

Lemma 19 There is an T -set S for the graph P kn ,
such that all components of P kn − S have order
m(P kn − S) or m(P kn − S)− 1.

Proof. Among all T -sets of minimum order, con-
sider those sets with maximum number of minimum
order components, and we let s denote the order of
a minimum component. Among these sets, let S
be one with the fewest components of order s in
P kn . Suppose s ≤ m(P kn − S) − 2. Note that
all of the components must be sets of consecutive
vertices. Assume that Cp is a smallest component.
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Then |V (Cp)| = s, and without loss of generality, let
Cp = {v1, v2, · · · , vs}. Suppose Ce is a largest com-
ponent, and so |V (Ce)| = m(P kn − S) = m and let
Ce = {vj , vj+1, · · · , vj+m−1}. Let C1, C2, · · · , Ca
be the components with vertices between vs ofCk and
vj of Ce, such that |Ci| = pi for 1 ≤ i ≤ a, and let
Ci = {vi1 , vi2 , · · · , vipi}. Now we construct the ver-
tex set S

′
as

S
′
= S − {vs+1, v1p1+1 , v2p2+1 , · · · , vapa+1}

∪{v11 , v22 , · · · , va1 , vj}.

Therefore, |S′ | = |S|,

m(P kn − S
′
) ≤ m(P kn − S)

and
ω(P kn − S

′
) = ω(P kn − S).

So we have

|S′ |+m(P kn − S
′
)

ω(P kn − S
′)

≤ |S|+m(P kn − S)
ω(P kn − S)

.

Therefore,

T (P kn ) =
|S′ |+m(P kn − S

′
)

ω(P kn − S
′)

.

But, P kn −S
′

has one less components of order s than
P kn−S, a contradiction. Thus, all components of P kn−
S have order m(P kn − S) or m(P kn − S) − 1. So,
m(P kn − S) = ⌈

n−k(ω−1)
ω ⌉. ⊓⊔

By the above two lemmas we give the exact val-
ues of tenacity of the powers of paths.

Theorem 20 Let P kn be a powers of a path Pn and
n = r(k + 1) + s for 0 ≤ s < k + 1. Then

T (P kn )

=


n, if n ≤ k + 1
k(r−1)+⌈n−k(r−1)

r
⌉

r , if n > k + 1 and s=0
kr+⌈n−kr

r+1
⌉

r+1 , if n > k + 1 and s ̸= 0.

Proof. If n ≤ k + 1, then P kn = Kn, so, T (P kn ) = n.
If n > k + 1, let S be a minimum T -set of P kn . By
Lemmas 18 and 19 we know that

|S| = k(ω − 1)

and

m(P kn − S) = ⌈
n− k(ω − 1)

ω
⌉.

We distinguish two cases:

Case 1. If s = 0, then n = r(k + 1), by

m(P kn − S) = ⌈
n− k(ω − 1)

ω
⌉ ≥ 1.

We know that 2 ≤ ω ≤ r. Thus, by the definition of
tenacity we have

T (P kn ) = min{
k(ω − 1) + ⌈n−k(ω−1)

ω ⌉
ω

|2 ≤ ω ≤ r}.

Now we consider the function

f(ω) =
k(ω − 1) + ⌈n−k(ω−1)

ω ⌉
ω

.

It is easy to see that

f
′
(ω) =

k

ω2
+⌈kω − 2n− 2k

ω3
⌉ = ⌈2kω − 2n− 2k

ω3
⌉.

Since ω3 > 0, we have f
′
(ω) ≤ 0 if and only if

g(ω) = 2kω − 2n − 2k ≤ 0. Since the root of the
equation g(ω) = 2kω − 2n − 2k = 0 is ω = n+k

k .
When ω ≤ n+k

k , it is easily seen that n+kk > r, so, if
2 ≤ ω ≤ r, we have g(ω) ≤ 0 , so, f

′
(ω) ≤ 0, and so

f(ω) is a decreasing function and the minimum value
occurs at the boundary. Thus ω = r. Then,

T (P kn ) =
k(r − 1) + ⌈n−k(r−1)

r ⌉
r

.

Case 2. If s ̸= 0, then n = r(k + 1) + s, by

m(P kn − S) = ⌈
n− k(ω − 1)

ω
⌉ ≥ 1.

We know that 2 ≤ ω ≤ r + 1. Thus, by the definition
of tenacity we have

T (P kn ) = min{
k(ω − 1) + ⌈n−k(ω−1)

ω ⌉
ω

|2 ≤ ω ≤ r+1}.

Now we consider the function

f(ω) =
k(ω − 1) + ⌈n−k(ω−1)

ω ⌉
ω

.

It is easy to see that

f
′
(ω) =

k

ω2
+⌈kω − 2n− 2k

ω3
⌉ = ⌈2kω − 2n− 2k

ω3
⌉.

Since ω3 > 0, we have f
′
(ω) ≤ 0 if and only if

g(ω) = 2kω − 2n − 2k ≤ 0. Since the root of the
equation g(ω) = 2kω − 2n − 2k = 0 is ω = n+k

k .
When ω ≤ n+k

k , it is easily seen that n+kk > r+1, so,
if 2 ≤ ω ≤ r + 1, we have g(ω) ≤ 0 , so, f

′
(ω) ≤ 0,

and so f(ω) is a decreasing function and the minimum
value occurs at the boundary. Thus ω = r + 1. Then,

T (P kn ) =
kr + ⌈n−krr+1 ⌉

r + 1
.

⊓⊔
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5 Relationships Between Tenacity
and Some Other Vulnerability Pa-
rameters

In this section, the relationships between the tenaci-
ty and some vulnerability parameters, namely the in-
tegrity, toughness and scattering number are estab-
lished.

Theorem 21 [2] For any graph G of order n,

β(G) + α(G) = n.

Theorem 22 If G is an incomplete connected graph,
I(G) is the integrity of G and β(G) is the indepen-
dence number of G, then we have

T (G) ≥ I(G)

β(G)
.

Proof. Suppose that S is a T -set of G. Then, by the
definition, we have

T (G) =
|S|+m(G− S)

ω(G− S)
.

It is obvious that ω(G−S) ≤ β(G), |S|+m(G−S) ≥
I(G). So we have

T (G) =
|S|+m(G− S)

ω(G− S)
≥ I(G)

β(G)
.

⊓⊔
The result in Theorem 22 is best possible, this can

be shown by the gear graph G = Gn.

Lemma 23 [5] If G is an incomplete connected
graph, I(G) = κ(G)+1 if and only if κ(G) = α(G).

Theorem 24 Let G be an incomplete connected
graph, if κ(G) = α(G), then we have

T (G) =
κ(G) + 1

β(G)
.

Proof. Let we select the maximum covering set S be
a cut-set of G. Then, |S| = α(G), and by Theorem
14, we have

ω(G− S) = n− α(G) = β(G),

m(G−S) = 1 , by the definition of tenacity, we have

T (G) ≤ |S|+m(G− S)
ω(G− S)

=
α(G) + 1

β(G)

=
κ(G) + 1

β(G)
.

On the other hand, by Theorem 22 and Lemma 23, we
have

T (G) ≥ I(G)

β(G)
=
κ(G) + 1

β(G)
.

Thus, when κ(G) = α(G), we have T (G) = κ(G)+1
β(G) .

⊓⊔

Theorem 25 If G is an incomplete connected graph,
t(G) is the toughness of G and α(G) is the covering
number of G, then we have

T (G) ≥ t(G)(1 + 1

α(G)
).

Proof. Suppose that S is a T -set of G. Then, by the
definition, we have

T (G) =
|S|+m(G− S)

ω(G− S)
.

It is obvious that ω(G− S) ≤ β(G), m(G− S) ≥ 1,
and |S| ≤ α(G). So we have

T (G) = |S|+m(G−S)
ω(G−S)

= |S|
ω(G−S)(

|S|+m(G−S)
|S| )

≥ t(G)(1 + m(G−S)
|S| )

≥ t(G)(1 + 1
α(G)).

⊓⊔
The result in Theorem 25 is best possible, this can

be shown by the graph G = K1,n−1.

Theorem 26 If G is an incomplete connected graph,
s(G) is the scattering number of G and β(G) is the
independence number of G, then we have

s(G) ≤ n+ 1

T (G) + 1
− κ(G).

Proof. Let S be a cut-set ofG. Then, by the definition
of scattering number, we have

s(G) ≥ ω(G− S)− |S|.

It is easy to see that

|S|+m(G− S) ≤ n+ 1− ω(G− S).

Then, by the definition of tenacity, we have

T (G) ≤ |S|+m(G− S)
ω(G− S)

≤ n+ 1− ω(G− S)
ω(G− S)

.
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So, we have

ω(G− S) ≤ n+ 1

T (G) + 1
.

On the other hand, we know that |S| ≥ κ(G). Thus

ω(G− S)− |S| ≤ n+ 1

T (G) + 1
− κ(G).

By the definition of scattering number and the choice
of S, we know that

s(G) = max{ω(G−S)−|S|} ≤ n+ 1

T (G) + 1
−κ(G).

⊓⊔
The result in Theorem 26 is best possible, this can

be shown by the graph G = K1,n−1.

6 Conclusion
If a system such as a communication network is mod-
eled by a graph G, there are many graph theoretical
parameters used to describe the vulnerability of com-
munication networks including connectivity, integrity,
toughness, binding number, tenacity and rupture de-
gree. Two ways of measuring the vulnerability of a
network is through the ease with which one can dis-
rupt the network, and the cost of a disruption. Con-
nectivity has the least cost as far as disrupting the net-
work, but it does not take into account what remains
after disruption. One can associate the cost with the
number of the vertices destroyed to get small compo-
nents and the reward with the number of the compo-
nents remaining after destruction. The tenacity mea-
sure is compromise between the cost and the reward
by minimizing the cost: reward ratio. Thus, a network
with a large tenacity performs better under external at-
tack. In this paper, we have obtained the exact values
or bounds for the tenacity of some special graphs.
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